2.3.1

Acids and Bases

In pure water at $25^{\circ} \mathrm{C}$, the concentration of H^{+}is always equal to the concentration of OH^{-}. Both have a concentration of 1.0×10^{-7} Molar. (Placing the symbol for a chemical in brackets $\left[\mathrm{H}^{+}\right]$is chemical shorthand for "concentration of." Therefore, $\left[\mathrm{H}^{+}\right]$is read "the concentration of hydrogen ion.") If we add a substance that results in an increase in $\left[\mathrm{H}^{+}\right]$, we say that substance is an acid. If we add a substance that results in a decrease in $\left[\mathrm{H}^{+}\right]$, we say that substance is a base. An acid is any substance that, when added to an aqueous solution, increases the $\left[\mathrm{H}^{+}\right]$of the solution, and a base is any substance that, when added to an aqueous solution, decreases the $\left[\mathrm{H}^{+}\right]$of the solution. A common acid, for example, is hydrochloric acid, HCl . When HCl reacts with water, it dissociates into an H^{+}and a chloride ion $\left(\mathrm{Cl}^{-}\right)$, thus increasing the $\left[\mathrm{H}^{+}\right] . \mathrm{HCl}$ is considered a strong acid because when placed in water, it completely dissociates into its two ions.

$$
\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

A weak acid, such as acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, dissociates into H^{+}and $\mathrm{CH}_{3} \mathrm{COO}^{-}$(acetate). However, most remains intact as acetic acid, and there is a chemical equilibrium between the $\mathrm{CH}_{3} \mathrm{COOH}$ and the $\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$. The conjugate base is the name given to the now unprotonated compound (acetate). Thus, the disassociation of acetic acid (weak acid) produces acetate (conjugate base) and a hydrogen ion:

$$
\mathrm{CH}_{3} \mathrm{COOH} \longleftrightarrow \longrightarrow \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

An example of a base is ammonia $\left(\mathrm{NH}_{3}\right)$, which will combine with H^{+}to form an ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$, thus removing H^{+}from the solution.

$$
\mathrm{NH}_{3}+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_{4}^{+}
$$

Another common base is sodium hydroxide (NaOH). How is this a base? When it dissolves, it dissociates into a sodium ion $\left(\mathrm{Na}^{+}\right)$and OH^{-}, no change in $\left[\mathrm{H}^{+}\right]$, right? However, the OH^{-}will combine with H^{+}to form water, thus removing H^{+}from the solution.

$$
\begin{gathered}
\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

