2.3.1

Acids and Bases

In pure water at 25° C, the concentration of H⁺ is always equal to the concentration of OH⁻. Both have a concentration of 1.0 x 10^{-7} Molar. (Placing the symbol for a chemical in brackets [H⁺] is chemical shorthand for "concentration of." Therefore, [H⁺] is read "the concentration of hydrogen ion.") If we add a substance that results in an increase in [H⁺], we say that substance is an **acid**. If we add a substance that results in a decrease in [H⁺], we say that substance that, when added to an aqueous solution, increases the [H⁺] of the solution, and a base is any substance that, when added to an aqueous solution, decreases the [H⁺] of the solution. A common acid, for example, is hydrochloric acid, HCI. When HCI reacts with water, it dissociates into an H⁺ and a chloride ion (Cl⁻), thus increasing the [H⁺]. HCI is considered a strong acid because when placed in water, it completely dissociates into its two ions.

$\rm HCI \longrightarrow \rm H^{+} + \rm CI^{-}$

A weak acid, such as **acetic acid** (CH₃COOH), dissociates into H⁺ and CH₃COO⁻ (acetate). However, most remains intact as acetic acid, and there is a chemical equilibrium between the CH₃COOH and the H⁺ + CH₃COO⁻. The **conjugate base** is the name given to the now unprotonated compound (acetate). Thus, the disassociation of acetic acid (weak acid) produces acetate (conjugate base) and a hydrogen ion:

$CH_3COOH \longleftrightarrow H^+ + CH_3COO^-$

An example of a base is ammonia (NH₃), which will combine with H⁺ to form an ammonium ion (NH₄⁺), thus removing H⁺ from the solution.

$NH_3 + H^+ \longrightarrow NH_4^+$

Another common base is sodium hydroxide (NaOH). How is this a base? When it dissolves, it dissociates into a sodium ion (Na⁺) and OH⁻, no change in [H⁺], right? However, the OH⁻ will combine with H⁺ to form water, thus removing H⁺ from the solution.

 $NaOH \rightarrow Na^{+} + OH^{-}$ $H^{+} + OH^{-} \rightarrow H_{2}O$

This content is provided to you freely by BYU-I Books.

Access it online or download it at https://books.byui.edu/bio_180/231__acids_and_bases.