2.3.1

Acids and Bases

In pure water at 250 C, the concentration of H⁺ is always equal to the concentration of OH⁻. Both have a concentration of 1.0×10^{-7} Molar. (Placing the symbol for a chemical in brackets [H⁺] is chemical shorthand for "concentration of." Therefore, [H⁺] is read "the concentration of hydrogen ion.") If we add a substance that results in an increase in [H⁺], we say that substance is an **acid**. If we add a substance that results in a decrease in [H⁺], we say that substance that, when added to an aqueous solution, increases the [H⁺] of the solution, and a base is any substance that, when added to an aqueous solution, decreases the [H⁺] of the solution. A common acid, for example, is hydrochloric acid, HCI. When HCI reacts with water, it dissociates into an H+ and a chloride ion (Cl⁻), thus increasing the [H⁺]. HCI is considered a strong acid because when placed in water, it completely dissociates into its two ions.

HCI --> H⁺ + Cl⁻

A weak acid, such as **acetic acid** (CH₃COOH), dissociates into H⁺ and CH₃COO⁻. However, most remain as acetic acid, and there is a chemical equilibrium between the CH₃COOH and the H⁺ + CH₃COO⁻.

CH₃COOH <--- --> H⁺ + CH₃COO⁻

An example of a base is ammonia (NH₃), which will combine with H⁺ to form an ammonium ion (NH₄⁺), thus removing H⁺ from the solution.

$NH_3 + H^+ --> NH_4^+$

Another common base is sodium hydroxide (NaOH). How is this a base? When it dissolves, it dissociates into a sodium ion (Na⁺) and OH⁻, no change in [H⁺], right? However, the OH⁻ will combine with H⁺ to form water, thus removing H⁺ from the solution.

NaOH --> Na⁺ + OH⁻ H⁺ + OH⁻ --> H₂O

This content is provided to you freely by BYU-I Books.

Access it online or download it at <u>https://books.byui.edu/bio_264_anatomy_phy_I/231__acids_and_bases</u>.