2.3.2

pН

Why do we care about the $[H^+]$ anyway? What is special about this particular ion? Well, it turns out that either too much or too little H^+ can cause serious problems to the body. If the $[H^+]$ is too low, it causes an excitation of the nervous system, resulting in constant contraction of our muscles, including the respiratory muscles, and that is a problem. On the other hand, if the $[H^+]$ is too high, it can result in depression of the nervous system, leading to coma. We use the terms acidic and basic to describe these conditions. If the $[H^+]$ of the solution is greater than 1.0×10^{-7} , we say the solution is **acidic**, and if the $[H^+]$ is less than 1.0×10^{-7} , we say the solution is **basic**.

Because the $[H^+]$ is so important and because it is rather cumbersome to say things like, "the $[H^+]$ of the fluid is 1.0 X 10⁻⁷ Molar," chemists have developed a shorthand to express the $[H^+]$. This shorthand expresses the $[H^+]$ as the pH of the solution. The **pH** of a solution is the **negative logarithm of the [H^+]** (concentration expressed as moles per liter, M). So, if the $[H^+]$ is 1.0 x 10⁻⁷ M, the pH of that solution would be 7 (-log 10⁻⁷ is -(-7) or 7). Since this is the pH in which the $[H^+]$ and $[OH^-]$ are equal, we say that this is a **neutral solution**. When using pH, one thing that is a little confusing is that as the $[H^+]$ of a solution goes up, the pH goes down. Suppose that a solution has a $[H^+]$ of 1.0 X 10-6 M. The pH of the solution would be 6, but since the math behind pH is log base 10, the change in pH from 7 to a pH of 6 represents a 10 fold increase in hyrdrogen ions. Moving from a pH of 7 to pH of 5 represents a 100 fold increase. Thus, an **acidic solution** is any solution with a pH<7. Likewise, any solution that has a pH>7 is a **basic solution**. Below is an image that shows the pH of some common solutions.

pН	Examples of solutions
0	Battery acid, strong hydrofluoric acid
ï	Hydrochloric acid secreted by stomach lining
2	Lemon juice, gastric acid, vinegar
3	Grapefruit juice, orange juice, soda
4	Tomato juice, acid rain
5	Soft drinking water, black coffee
6	Urine, saliva
7	"Pure" water
8	Sea water
9	Baking soda
10	Great Salt Lake, milk of magnesia
11	Ammonia solution
12	Soapy water
13	Bleach, oven cleaner
14	Liquid drain cleaner

pH Scale and Examples. Downloaded from Wikimedia Commons Fall 2014; Author: OpenStax College; License: Creative Commons Attribution 3.0 Unported license.

So, there are two important lessons from this; the lower the pH, the higher the [H $^+$], and a change in pH of one unit (7 to 6 for example) is a 10-fold change in [H $^+$]. Just for reference, the normal pH of our blood is slightly basic, 7.4 (range = 7.35 – 7.45). If the pH of the blood rises above 7.45, the person is in a state of **alkalosis** (not enough H $^+$), and if it drops below 7.35, the person is in a state of **acidosis** (too much H $^+$). In mammals, the pH range of the blood that is considered to be compatible with life is from 6.8 to 7.8. A pH above or below these values usually results in death.

This content is provided to you freely by BYU-I Books.

Access it online or download it at https://books.byui.edu/bio_264_anatomy_phy_1/232_ph.