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Electron Configurations
Electron Configurations

The relative energy of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s,
3d, 4p, and so on). Electron configurations and orbital diagrams can be determined by applying the Pauli
exclusion principle (no two electrons can have the same set of four quantum numbers) and Hund’s rule
(whenever possible, electrons retain unpaired spins in degenerate orbitals). Electrons in the outermost orbitals,
called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table,
elements with analogous valence electron configurations usually occur within the same group. There are some
exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed.
The periodic table can be divided into three categories based on the orbital in which the last electron to be added
is placed: main group elements (s and p orbitals), transition elements (d orbitals), and inner transition elements (f
orbitals).

11.1 Electronic Structure of Atoms (Electron Configurations)

Learning Objectives

By the end of this section, you will be able to:

Derive the predicted ground-state electron configurations of atoms
Identify and explain exceptions to predicted electron configurations for atoms and ions
Relate electron configurations to element classifications in the periodic table

Having introduced the basics of atomic structure and quantum mechanics, we can use our understanding of quantum
numbers to determine how atomic orbitals relate to one another. This allows us to determine which orbitals are
occupied by electrons in each atom. The specific arrangement of electrons in orbitals of an atom determines many of
the chemical properties of that atom.

Orbital Energies and Atomic Structure
The energy of atomic orbitals increases as the principal quantum number, n, increases. In any atom with two or more
electrons, the repulsion between the electrons makes energies of subshells with different values of l differ so that the
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energy of the orbitals increases within a shell in the order s < p < d < f. Figure 11.1 depicts how these two trends in
increasing energy relate. The 1s orbital at the bottom of the diagram is the orbital with electrons of lowest energy. The
energy increases as we move up to the 2s and then 2p, 3s, and 3p orbitals, showing that the increasing n value has
more influence on energy than the increasing l value for small atoms. However, this pattern does not hold for larger
atoms. The 3d orbital is higher in energy than the 4s orbital. Such overlaps continue to occur frequently as we move up
the chart.

Figure 11.1

Generalized energy-level diagram for atomic orbitals in an atom with two or more electrons (not to scale).

Electrons in successive atoms on the periodic table tend to fill low-energy orbitals first. Thus, many students find it
confusing that, for example, the 5p orbitals fill immediately after the 4d, and immediately before the 6s. The filling order
is based on observed experimental results, and has been confirmed by theoretical calculations. As the principal
quantum number, n, increases, the size of the orbital increases and the electrons spend more time farther from the
nucleus. Thus, the attraction to the nucleus is weaker and the energy associated with the orbital is higher (less
stabilized). But this is not the only effect we have to take into account. Within each shell, as the value of l increases, the
electrons are less penetrating (meaning there is less electron density found close to the nucleus), in the order s > p > d >
f. Electrons that are closer to the nucleus slightly repel electrons that are farther out, offsetting the more dominant
electron–nucleus attractions slightly (recall that all electrons have −1 charges, but nuclei have +Z charges). This
phenomenon is called shielding and will be discussed in more detail in the next section. Electrons in orbitals that
experience more shielding are less stabilized and thus higher in energy. For small orbitals (1s through 3p), the increase
in energy due to n is more significant than the increase due to l; however, for larger orbitals the two trends are
comparable and cannot be simply predicted. We will discuss methods for remembering the observed order.

The arrangement of electrons in the orbitals of an atom is called the electron configuration of the atom. We describe an
electron configuration with a symbol that contains three pieces of information (Figure 11.2):

1. The number of the principal quantum shell, n,
2. The letter that designates the orbital type (the subshell, l), and
3. A superscript number that designates the number of electrons in that particular subshell.
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For example, the notation 2p  (read "two–p–four") indicates four electrons in a p subshell (l = 1) with a principal
quantum number (n) of 2. The notation 3d  (read "three–d–eight") indicates eight electrons in the d subshell (i.e., l = 2)
of the principal shell for which n = 3.

Figure 11.2

The diagram of an electron configuration specifies the subshell (n and l value, with letter symbol) and superscript
number of electrons.

The Aufbau Principle
To determine the electron configuration for any particular atom, we can “build” the structures in the order of atomic
numbers. Beginning with hydrogen, and continuing across the periods of the periodic table, we add one proton at a time
to the nucleus and one electron to the proper subshell until we have described the electron configurations of all the
elements. This procedure is called the Aufbau principle, from the German word Aufbau (“to build up”). Each added
electron occupies the subshell of lowest energy available (in the order shown in Figure 11.1), subject to the limitations
imposed by the allowed quantum numbers according to the Pauli exclusion principle. Electrons enter higher-energy
subshells only after lower-energy subshells have been filled to capacity. Figure 11.3 illustrates the traditional way to
remember the filling order for atomic orbitals. Since the arrangement of the periodic table is based on the electron
configurations, Figure.11.4 provides an alternative method for determining the electron configuration. The filling order
simply begins at hydrogen and includes each subshell as you proceed in increasing Z order. For example, after filling the
3p block up to Ar, we see the orbital will be 4s (K, Ca), followed by the 3d orbitals.

Figure 11.3

This diagram depicts the energy order for atomic orbitals and is useful for deriving ground-state electron configurations.
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Figure 11.4

This partial periodic table shows electron configurations for the valence subshells of atoms. By “building up” from
hydrogen, this table can be used to determine the electron configuration for atoms of most elements in the periodic
table. (Electron configurations of the lanthanides and actinides are not accurately predicted by this simple approach.
See Figure 11.6
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We will now construct the ground-state electron configuration and orbital diagram for a selection of atoms in the first
and second periods of the periodic table. Orbital diagrams are pictorial representations of the electron configuration,
showing the individual orbitals and the pairing arrangement of electrons. We start with a single hydrogen atom (atomic
number 1), which consists of one proton and one electron. Referring to Figure 11.3 or Figure 11.4, we would expect to
find the electron in the 1s orbital. By convention, the

value is usually filled first. The electron configuration and the orbital diagram are:

Following hydrogen is the noble gas helium, which has an atomic number of 2. The helium atom contains two protons
and two electrons. The first electron has the same four quantum numbers as the hydrogen atom electron (n = 1, l = 0, m
= 0,

). The second electron also goes into the 1s orbital and fills that orbital. The second electron has the same n, l, and m
quantum numbers, but must have the opposite spin quantum number,

𝑚𝑠 = + 1
2

l

𝑚𝑠 = + 1
2

l
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This is in accord with the Pauli exclusion principle: No two electrons in the same atom can have the same set of four
quantum numbers. For orbital diagrams, this means two arrows go in each box (representing two electrons in each
orbital) and the arrows must point in opposite directions (representing paired spins). The electron configuration and
orbital diagram of helium are:

The n = 1 shell is completely filled in a helium atom.

The next atom is the alkali metal lithium with an atomic number of 3. The first two electrons in lithium fill the 1s orbital
and have the same sets of four quantum numbers as the two electrons in helium. The remaining electron must occupy
the orbital of next lowest energy, the 2s orbital (Figure 11.3 or Figure 11.4). Thus, the electron configuration and orbital
diagram of lithium are:

An atom of the alkaline earth metal beryllium, with an atomic number of 4, contains four protons in the nucleus and four
electrons surrounding the nucleus. The fourth electron fills the remaining space in the 2s orbital.

An atom of boron (atomic number 5) contains five electrons. The n = 1 shell is filled with two electrons and three
electrons will occupy the n = 2 shell. Because any s subshell can contain only two electrons, the fifth electron must
occupy the next energy level, which will be a 2p orbital. There are three degenerate 2p orbitals (m  = −1, 0, +1) and the
electron can occupy any one of these p orbitals. When drawing orbital diagrams, we include empty boxes to depict any
empty orbitals in the same subshell that we are filling.

𝑚𝑠 = − 1
2 .

l
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Carbon (atomic number 6) has six electrons. Four of them fill the 1s and 2s orbitals. The remaining two electrons
occupy the 2p subshell. We now have a choice of filling one of the 2p orbitals and pairing the electrons or of leaving the
electrons unpaired in two different, but degenerate, p orbitals. The orbitals are filled as described by Hund’s rule: the
lowest-energy configuration for an atom with electrons within a set of degenerate orbitals is that having the maximum
number of unpaired electrons. Thus, the two electrons in the carbon 2p orbitals have identical n, l, and m  quantum
numbers and differ in their m  quantum number (in accord with the Pauli exclusion principle). The electron configuration
and orbital diagram for carbon are:

Nitrogen (atomic number 7) fills the 1s and 2s subshells and has one electron in each of the three 2p orbitals, in
accordance with Hund’s rule. These three electrons have unpaired spins. Oxygen (atomic number 8) has a pair of
electrons in any one of the 2p orbitals (the electrons have opposite spins) and a single electron in each of the other two.
Fluorine (atomic number 9) has only one 2p orbital containing an unpaired electron. All of the electrons in the noble gas
neon (atomic number 10) are paired, and all of the orbitals in the n = 1 and the n = 2 shells are filled. The electron
configurations and orbital diagrams of these four elements are:

The alkali metal sodium (atomic number 11) has one more electron than the neon atom. This electron must go into the
lowest-energy subshell available, the 3s orbital, giving a 1s 2s 2p 3s  configuration. The electrons occupying the
outermost shell orbital(s) (highest value of n) are called valence electrons, and those occupying the inner shell orbitals
are called core electrons (Figure 11.5). Since the core electron shells correspond to noble gas electron configurations,

s

l

2 2 6 1
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we can abbreviate electron configurations by writing the noble gas that matches the core electron configuration, along
with the valence electrons in a condensed format. For our sodium example, the symbol [Ne] represents core electrons,
(1s 2s 2p ) and our abbreviated or condensed configuration is [Ne]3s .

Watch on YouTube

Figure 11.5

A core-abbreviated electron configuration (right) replaces the core electrons with the noble gas symbol whose
configuration matches the core electron configuration of the other element.

Similarly, the abbreviated configuration of lithium can be represented as [He]2s , where [He] represents the
configuration of the helium atom, which is identical to that of the filled inner shell of lithium. Writing the configurations
in this way emphasizes the similarity of the configurations of lithium and sodium. Both atoms, which are in the alkali
metal family, have only one electron in a valence s subshell outside a filled set of inner shells.

The alkaline earth metal magnesium (atomic number 12), with its 12 electrons in a [Ne]3s  configuration, is analogous
to its family member beryllium, [He]2s . Both atoms have a filled s subshell outside their filled inner shells. Aluminum

2 2 6 1

1

Li: [He]2𝑠1

Na: [Ne]3𝑠1

2

2
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(atomic number 13), with 13 electrons and the electron configuration [Ne]3s 3p , is analogous to its family member
boron, [He]2s 2p .

The electron configurations of silicon (14 electrons), phosphorus (15 electrons), sulfur (16 electrons), chlorine (17
electrons), and argon (18 electrons) are analogous in the electron configurations of their outer shells to their
corresponding family members carbon, nitrogen, oxygen, fluorine, and neon, respectively, except that the principal
quantum number of the outer shell of the heavier elements has increased by one to n = 3. Figure 11.6 shows the lowest
energy, or ground-state, electron configuration for these elements as well as that for atoms of each of the known
elements.

Figure 11.6

This version of the periodic table shows the outer-shell electron configuration of each element. Note that down each
group, the configuration is often similar.

When we come to the next element in the periodic table, the alkali metal potassium (atomic number 19), we might
expect that we would begin to add electrons to the 3d subshell. However, all available chemical and physical evidence
indicates that potassium is like lithium and sodium, and that the next electron is not added to the 3d level but is,
instead, added to the 4s level (Figure 11.6). As discussed previously, the 3d orbital with no radial nodes is higher in
energy because it is less penetrating and more shielded from the nucleus than the 4s, which has three radial nodes.
Thus, potassium has an electron configuration of [Ar]4s . Hence, potassium corresponds to Li and Na in its valence
shell configuration. The next electron is added to complete the 4s subshell and calcium has an electron configuration of
[Ar]4s . This gives calcium an outer-shell electron configuration corresponding to that of beryllium and magnesium.

Beginning with the transition metal scandium (atomic number 21), additional electrons are added successively to the 3d
subshell. This subshell is filled to its capacity with 10 electrons (remember that for l = 2 [d orbitals], there are 2l + 1 = 5
values of m , meaning that there are five d orbitals that have a combined capacity of 10 electrons). The 4p subshell fills

2 1

2 1

1

2

l
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next. Note that for three series of elements, scandium (Sc) through copper (Cu), yttrium (Y) through silver (Ag), and
lutetium (Lu) through gold (Au), a total of 10 d electrons are successively added to the (n – 1) shell next to the n shell to
bring that (n – 1) shell from 8 to 18 electrons. For two series, lanthanum (La) through lutetium (Lu) and actinium (Ac)
through lawrencium (Lr), 14 f electrons (l = 3, 2l + 1 = 7 m  values; thus, seven orbitals with a combined capacity of 14
electrons) are successively added to the (n – 2) shell to bring that shell from 18 electrons to a total of 32 electrons.

Example 11.1

Quantum Numbers and Electron Configurations
What is the electron configuration and orbital diagram for a phosphorus atom? What are the four quantum
numbers for the last electron added?

Solution
The atomic number of phosphorus is 15. Thus, a phosphorus atom contains 15 electrons. The order of filling of
the energy levels is 1s, 2s, 2p, 3s, 3p, 4s, . . . The 15 electrons of the phosphorus atom will fill up to the 3p
orbital, which will contain three electrons:

The last electron added is a 3p electron. Therefore, n = 3 and, for a p-type orbital, l = 1. The m  value could be –1,
0, or +1. The three p orbitals are degenerate, so any of these m  values is correct. For unpaired electrons,
convention assigns the value of

for the spin quantum number; thus,

Check Your Learning
Identify the atoms from the electron configurations given:
(a) [Ar]4s 3d

(b) [Kr]5s 4d 5p

Answer

The periodic table can be a powerful tool in predicting the electron configuration of an element. However, we do find
exceptions to the order of filling of orbitals that are shown in Figure 11.3 or Figure 11.4. For instance, the electron
configurations (shown in Figure 11.6) of the transition metals chromium (Cr; atomic number 24) and copper (Cu; atomic

l

l

l

+ 12

𝑚𝑠 = + 1
2 .

2 5

2 10 6

(a) Mn (b) Xe
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number 29), among others, are not those we would expect. In general, such exceptions involve subshells with very
similar energy, and small effects can lead to changes in the order of filling.

In the case of Cr and Cu, we find that half-filled and completely filled subshells apparently represent conditions of
preferred stability. This stability is such that an electron shifts from the 4s into the 3d orbital to gain the extra stability of
a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb,
atomic number 41) is predicted to have the electron configuration [Kr]5s 4d . Experimentally, we observe that its
ground-state electron configuration is actually [Kr]5s 4d . We can rationalize this observation by saying that the
electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy
between the 5s and 4d orbitals. There is no simple method to predict the exceptions for atoms where the magnitude of
the repulsions between electrons is greater than the small differences in energy between subshells.

Electron Configurations and the Periodic Table
As described earlier, the periodic table arranges atoms based on increasing atomic number so that elements with the
same chemical properties recur periodically. When their electron configurations are added to the table (Figure 11.6), we
also see a periodic recurrence of similar electron configurations in the outer shells of these elements. Because they are
in the outer shells of an atom, valence electrons play the most important role in chemical reactions. The outer electrons
have the highest energy of the electrons in an atom and are more easily lost or shared than the core electrons. Valence
electrons are also the determining factor in some physical properties of the elements.

Elements in any one group (or column) have the same number of valence electrons; the alkali metals lithium and
sodium each have only one valence electron, the alkaline earth metals beryllium and magnesium each have two, and the
halogens fluorine and chlorine each have seven valence electrons. The similarity in chemical properties among
elements of the same group occurs because they have the same number of valence electrons. It is the loss, gain, or
sharing of valence electrons that defines how elements react.

It is important to remember that the periodic table was developed on the basis of the chemical behavior of the
elements, well before any idea of their atomic structure was available. Now we can understand why the periodic table
has the arrangement it has—the arrangement puts elements whose atoms have the same number of valence electrons
in the same group. This arrangement is emphasized in Figure 11.6, which shows in periodic-table form the electron
configuration of the last subshell to be filled by the Aufbau principle. The colored sections of Figure 11.6 show the three
categories of elements classified by the orbitals being filled: main group, transition, and inner transition elements. These
classifications determine which orbitals are counted in the valence shell, or highest energy level orbitals of an atom.

1. Main group elements (sometimes called representative elements) are those in which the last electron added
enters an s or a p orbital in the outermost shell, shown in blue and red in Figure 11.6. This category includes all the
nonmetallic elements, as well as many metals and the metalloids. The valence electrons for main group elements
are those with the highest n level. For example, gallium (Ga, atomic number 31) has the electron configuration
[Ar]4s 3d 4p , which contains three valence electrons (underlined). The completely filled d orbitals count as core,
not valence, electrons.

2. Transition elements or transition metals. These are metallic elements in which the last electron added enters a d
orbital. The valence electrons (those added after the last noble gas configuration) in these elements include the ns
and (n – 1) d electrons. The official IUPAC definition of transition elements specifies those with partially filled d
orbitals. Thus, the elements with completely filled orbitals (Zn, Cd, Hg, as well as Cu, Ag, and Au in Figure 11.6) are
not technically transition elements. However, the term is frequently used to refer to the entire d block (colored
yellow in Figure 11.6), and we will adopt this usage in this textbook.

3. Inner transition elements are metallic elements in which the last electron added occupies an f orbital. They are
shown in green in Figure 11.6. The valence shells of the inner transition elements consist of the (n – 2)f, the (n –
1)d, and the ns subshells. There are two inner transition series:

a. The lanthanide series: lanthanum (La) through lutetium (Lu)
b. The actinide series: actinium (Ac) through lawrencium (Lr)

2 3

1 4

2 10 1
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Lanthanum and actinium, because of their similarities to the other members of the series, are included and used to
name the series, even though they are transition metals with no f electrons.

Electron Configurations of Ions
Ions are formed when atoms gain or lose electrons. A cation (positively charged ion) forms when one or more electrons
are removed from a parent atom. For main group elements, the electrons that were added last are the first electrons
removed. For transition metals and inner transition metals, however, electrons in the s orbital are easier to remove than
the d or f electrons, and so the highest ns electrons are lost, and then the (n – 1)d or (n – 2)f electrons are removed. An
anion (negatively charged ion) forms when one or more electrons are added to a parent atom. The added electrons fill in
the order predicted by the Aufbau principle.

Watch on YouTube
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Example 11.2

Predicting Electron Configurations of Ions
What is the electron configuration of:
(a) Na

(b) P

(c) Al

(d) Fe

(e) Sm

Solution
First, write out the electron configuration for each parent atom. We have chosen to show the full, unabbreviated
configurations to provide more practice for students who want it, but listing the core-abbreviated electron
configurations is also acceptable.
Next, determine whether an electron is gained or lost. Remember electrons are negatively charged, so ions with
a positive charge have lost an electron. For main group elements, the last orbital gains or loses the electron. For
transition metals, the last s orbital loses an electron before the d orbitals.

(a) Na: 1s 2s 2p 3s . Sodium cation loses one electron, so Na : 1s 2s 2p 3s  = Na : 1s 2s 2p .

(b) P: 1s 2s 2p 3s 3p . Phosphorus trianion gains three electrons, so P : 1s 2s 2p 3s 3p .

(c) Al: 1s 2s 2p 3s 3p . Aluminum dication loses two electrons Al : 1s 2s 2p 3s 3p  =

Al : 1s 2s 2p 3s .

(d) Fe: 1s 2s 2p 3s 3p 4s 3d . Iron(II) loses two electrons and, since it is a transition metal, they are removed
from the 4s orbital Fe : 1s 2s 2p 3s 3p 4s 3d  = 1s 2s 2p 3s 3p 3d .

(e). Sm: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f . Samarium trication loses three electrons. The first two
will be lost from the 6s orbital, and the final one is removed from the 4f orbital. Sm :
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f  = 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 4f .

Check Your Learning
Which ion with a +2 charge has the electron configuration 1s 2s 2p 3s 3p 3d 4s 4p 4d ? Which ion with a +3
charge has this configuration?

Answer

+

3–

2+

2+

3+

2 2 6 1 + 2 2 6 1 + 2 2 6

2 2 6 2 3 3− 2 2 6 2 6

2 2 6 2 1 2+ 2 2 6 2 1

2+ 2 2 6 1

2 2 6 2 6 2 6

2+ 2 2 6 2 6 2 6 2 2 6 2 6 6

2 2 6 2 6 2 10 6 2 10 6 2 6

3+

2 2 6 2 6 2 10 6 2 10 6 2 6 2 2 6 2 6 2 10 6 2 10 6 5

2 2 6 2 6 10 2 6 5

Tc , Ru2+ 3+
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Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.
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