Nomenclature

Nomenclature

14

Chemists use nomenclature rules to clearly name compounds. Ionic and molecular compounds are named using somewhat-different methods. Binary ionic compounds typically consist of a metal and a nonmetal. The name of the metal is written first, followed by the name of the nonmetal with its ending changed to –ide. For example, K_2O is called potassium oxide. If the metal can form ions with different charges, a Roman numeral in parentheses follows the name of the metal to specify its charge. Thus, FeCl₂ is iron(II) chloride and FeCl₃ is iron(III) chloride. Some compounds contain polyatomic ions; the names of common polyatomic ions should be memorized. Molecular compounds can form compounds with different ratios of their elements, so prefixes are used to specify the numbers of atoms of each element in a molecule of the compound. Examples include SF_{φ} sulfur hexafluoride, and N_2O_4 dinitrogen tetroxide. Acids are an important class of compounds containing hydrogen and having special nomenclature rules. Binary acids are named using the prefix hydro-, changing the – ide suffix to –ic, and adding "acid;" HCl is hydrochloric acid. Oxyacids are named by changing the ending of the anion (–ate to –ic and –ite to –ous), and adding "acid;" H₂CO₃ is carbonic acid.

14.1 Chemical Nomenclature

Learning Objectives

By the end of this section, you will be able to:

· Derive names for common types of inorganic compounds using a systematic approach

Nomenclature, a collection of rules for naming things, is important in science and in many other situations. This module describes an approach that is used to name simple ionic and molecular compounds, such as NaCl, CaCO₃, and N₂O₄. The simplest of these are binary compounds, those containing only two elements, but we will also consider how to name ionic compounds containing polyatomic ions, and one specific, very important class of compounds known as acids (subsequent chapters in this text will focus on these compounds in great detail). We will limit our attention here to inorganic compounds, compounds that are composed principally of elements other than carbon, and will follow the

nomenclature guidelines proposed by IUPAC. The rules for organic compounds, in which carbon is the principle element, will be treated in a later chapter on organic chemistry.

Ionic Compounds

To name an inorganic compound, we need to consider the answers to several questions. First, is the compound ionic or molecular? If the compound is ionic, does the metal form ions of only one type (fixed charge) or more than one type (variable charge)? Are the ions monatomic or polyatomic? If the compound is molecular, does it contain hydrogen? If so, does it also contain oxygen? From the answers we derive, we place the compound in an appropriate category and then name it accordingly.

Compounds Containing Only Monatomic Ions

The name of a binary compound containing monatomic ions consists of the name of the cation (the name of the metal) followed by the name of the anion (the name of the nonmetallic element with its ending replaced by the suffix -ide). Some examples are given in Table 14.1.

Table 14.1

Names of Some Ionic Compounds

NaCl, sodium chloride	Na ₂ O, sodium oxide
KBr, potassium bromide	CdS, cadmium sulfide
Cal ₂ , calcium iodide	Mg ₃ N ₂ , magnesium nitride
CsF, cesium fluoride	Ca ₃ P ₂ , calcium phosphide
LiCl, lithium chloride	Al ₄ C ₃ , aluminum carbide

Compounds Containing Polyatomic Ions

Compounds containing polyatomic ions are named similarly to those containing only monatomic ions, i.e., by naming first the cation and then the anion. Examples are shown in <u>Table 14.2</u>.

Table 14.2

Names of Some Polyatomic Ionic Compounds

$KC_2H_3O_2$, potassium acetate	NH ₄ Cl, ammonium chloride
NaHCO ₃ , sodium bicarbonate	CaSO ₄ , calcium sulfate
Al ₂ (CO ₃) ₃ , aluminum carbonate	$Mg_3(PO_4)_2$, magnesium phosphate

Chemistry in Everyday Life

Ionic Compounds in Your Cabinets

Every day you encounter and use a large number of ionic compounds. Some of these compounds, where they are found, and what they are used for are listed in <u>Table 14.3</u>. Look at the label or ingredients list on the various products that you use during the next few days, and see if you run into any of those in this table, or find other ionic compounds that you could now name or write as a formula.

Table 14.3

Everyday Ionic Compounds

Ionic Compound	Use
NaCl, sodium chloride	ordinary table salt
KI, potassium iodide	added to "iodized" salt for thyroid health
NaF, sodium fluoride	ingredient in toothpaste
NaHCO ₃ , sodium bicarbonate	baking soda; used in cooking (and as antacid)
Na ₂ CO ₃ , sodium carbonate	washing soda; used in cleaning agents
NaOCI, sodium hypochlorite	active ingredient in household bleach
CaCO ₃ calcium carbonate	ingredient in antacids
$Mg(OH)_2$, magnesium hydroxide	ingredient in antacids
$AI(OH)_3$, aluminum hydroxide	ingredient in antacids
NaOH, sodium hydroxide	lye; used as drain cleaner
K ₃ PO ₄ , potassium phosphate	food additive (many purposes)
MgSO ₄ , magnesium sulfate	added to purified water
Na ₂ HPO ₄ , sodium hydrogen phosphate	anti-caking agent; used in powdered products
Na ₂ SO ₃ , sodium sulfite	preservative

Compounds Containing a Metal Ion with a Variable Charge

Most of the transition metals and some main group metals can form two or more cations with different charges. Compounds of these metals with nonmetals are named with the same method as compounds in the first category, except the charge of the metal ion is specified by a Roman numeral in parentheses after the name of the metal. The charge of the metal ion is determined from the formula of the compound and the charge of the anion. For example, consider binary ionic compounds of iron and chlorine. Iron typically exhibits a charge of either 2+ or 3+ (see Figure 14.1), and the two corresponding compound formulas are FeCl₂ and FeCl₃. The simplest name, "iron chloride," will, in this case, be ambiguous, as it does not distinguish between these two compounds. In cases like this, the charge of the metal ion is included as a Roman numeral in parentheses immediately following the metal name. These two compounds are then unambiguously named iron(II) chloride and iron(III) chloride, respectively. Other examples are provided in Table 14.4.

Table 14.4

Some Ionic Compounds with Variably Charged Metal Ions

Compound	Name
FeCl ₂	iron(II) chloride
FeCl ₃	iron(III) chloride
Hg ₂ O	mercury(I) oxide
HgO	mercury(II) oxide
SnF ₂	tin(II) fluoride
SnF ₄	tin(IV) fluoride

Out-of-date nomenclature used the suffixes -ic and -ous to designate metals with higher and lower charges, respectively: Iron(III) chloride, FeCl₃, was previously called ferric chloride, and iron(II) chloride, FeCl₂, was known as ferrous chloride. Though this naming convention has been largely abandoned by the scientific community, it remains in use by some segments of industry. For example, you may see the words *stannous fluoride* on a tube of toothpaste. This represents the formula SnF₂, which is more properly named tin(II) fluoride. The other fluoride of tin is SnF₄, which was previously called stannic fluoride but is now named tin(IV) fluoride.

Ionic Hydrates

lonic compounds that contain water molecules as integral components of their crystals are called hydrates. The name for an ionic hydrate is derived by adding a term to the name for the *anhydrous* (meaning "not hydrated") compound that indicates the number of water molecules associated with each formula unit of the compound. The added word begins with a Greek prefix denoting the number of water molecules (see <u>Table 14.5</u>) and ends with "hydrate." For example, the anhydrous compound copper(II) sulfate also exists as a hydrate containing five water molecules and named copper(II) sulfate pentahydrate. Washing soda is the common name for a hydrate of sodium carbonate containing 10 water molecules; the systematic name is sodium carbonate decahydrate.

Formulas for ionic hydrates are written by appending a vertically centered dot, a coefficient representing the number of water molecules, and the formula for water. The two examples mentioned in the previous paragraph are represented by the formulas

copper(II) sulfate pentahydrate $CuSO_4 \cdot 5H_2 O$ sodium carbonate decahydrate $Na_2 CO_3 \cdot 10H_2 O$

Table 14.5

Nomenclature Prefixes

Number	Prefix	Number	Prefix
1 (sometimes omitted)	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-
5	penta-	10	deca-

Example 14.1

Naming Ionic Compounds

Name the following ionic compounds: (a) $\ensuremath{\mathsf{Fe}}_2\ensuremath{\mathsf{S}}_3$

(b) CuSe

(c) GaN

(d) MgSO₄·7H₂O

(e) Ti₂(SO₄)₃

Solution

The anions in these compounds have a fixed negative charge (S $^{2^-},$ S $^{2^-},$ $N^{3^-},$ and

 ${\rm SO_4}^{2-}$),

and the compounds must be neutral. Because the total number of positive charges in each compound must equal the total number of negative charges, the positive ions must be Fe^{3+} , Cu^{2+} , Ga^{3+} , Mg^{2+} , and Ti^{3+} . These charges are used in the names of the metal ions:

(a) iron(III) sulfide

- (b) copper(II) selenide
- (c) gallium(III) nitride

(d) magnesium sulfate heptahydrate

(e) titanium(III) sulfate

Check Your Learning

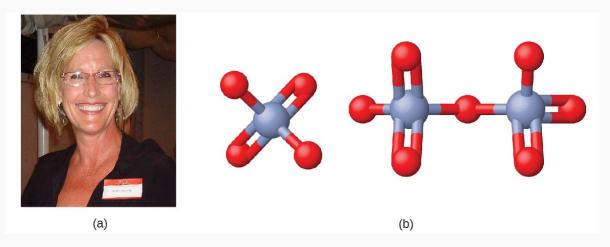
Write the formulas of the following ionic compounds: (a) chromium(III) phosphide

- (b) mercury(II) sulfide
- (c) manganese(II) phosphate
- (d) copper(l) oxide

(e) iron(III) chloride dihydrate

Answer

(a) CrP; (b) HgS; (c) $Mn_3(PO_4)_2$; (d) Cu_2O ; (e) $FeCl_3 \cdot 2H_2O$


Chemistry in Everyday Life

Erin Brokovich and Chromium Contamination

In the early 1990s, legal file clerk Erin Brockovich (<u>Figure 14.2</u>) discovered a high rate of serious illnesses in the small town of Hinckley, California. Her investigation eventually linked the illnesses to groundwater contaminated by Cr(VI) used by Pacific Gas & Electric (PG&E) to fight corrosion in a nearby natural gas pipeline. As dramatized in the film *Erin Brokovich* (for which Julia Roberts won an Oscar), Erin and lawyer Edward Masry sued PG&E for contaminating the water near Hinckley in 1993. The settlement they won in 1996–\$333 million– was the largest amount ever awarded for a direct-action lawsuit in the US at that time.

Figure 14.2

(a) Erin Brockovich found that Cr(VI), used by PG&E, had contaminated the Hinckley, California, water supply. (b) The Cr(VI) ion is often present in water as the polyatomic ions chromate, CrO_4^{2-} (left), and dichromate, $Cr_2O_7^{2-}$ (right).

Chromium compounds are widely used in industry, such as for chrome plating, in dye-making, as preservatives, and to prevent corrosion in cooling tower water, as occurred near Hinckley. In the environment, chromium exists primarily in either the Cr(III) or Cr(VI) forms. Cr(III), an ingredient of many vitamin and nutritional supplements, forms compounds that are not very soluble in water, and it has low toxicity. But Cr(VI) is much more toxic and forms compounds that are reasonably soluble in water. Exposure to small amounts of Cr(VI) can lead to damage of the respiratory, gastrointestinal, and immune systems, as well as the kidneys, liver, blood, and skin.

Despite cleanup efforts, Cr(VI) groundwater contamination remains a problem in Hinckley and other locations across the globe. A 2010 study by the Environmental Working Group found that of 35 US cities tested, 31 had higher levels of Cr(VI) in their tap water than the public health goal of 0.02 parts per billion set by the California Environmental Protection Agency.

Molecular (Covalent) Compounds

The bonding characteristics of inorganic molecular compounds are different from ionic compounds, and they are named using a different system as well. The charges of cations and anions dictate their ratios in ionic compounds, so specifying the names of the ions provides sufficient information to determine chemical formulas. However, because covalent bonding allows for significant variation in the combination ratios of the atoms in a molecule, the names for molecular compounds must explicitly identify these ratios.

Compounds Composed of Two Elements

When two nonmetallic elements form a molecular compound, several combination ratios are often possible. For example, carbon and oxygen can form the compounds CO and CO_2 . Since these are different substances with different properties, they cannot both have the same name (they cannot both be called carbon oxide). To deal with this situation, we use a naming method that is somewhat similar to that used for ionic compounds, but with added prefixes to specify the numbers of atoms of each element. The name of the more metallic element (the one farther to the left and/or bottom of the periodic table) is first, followed by the name of the more nonmetallic element (the one farther to the right and/or top) with its ending changed to the suffix – *ide*. The numbers of atoms of each element are designated by the Greek prefixes shown in Table 14.5.

When only one atom of the first element is present, the prefix *mono*- is usually deleted from that part. Thus, CO is named carbon monoxide, and CO_2 is called carbon dioxide. When two vowels are adjacent, the *a* in the Greek prefix is usually dropped. Some other examples are shown in <u>Table 14.6</u>.

Table 14.6

Compound	Name	Compound	Name
SO ₂	sulfur dioxide	BCI ₃	boron trichloride
SO ₃	sulfur trioxide	SF ₆	sulfur hexafluoride
NO ₂	nitrogen dioxide	PF ₅	phosphorus pentafluoride
N ₂ O ₄	dinitrogen tetroxide	P ₄ O ₁₀	tetraphosphorus decaoxide
N ₂ O ₅	dinitrogen pentoxide	IF ₇	iodine heptafluoride

Names of Some Molecular Compounds Composed of Two Elements

There are a few common names that you will encounter as you continue your study of chemistry. For example, although NO is often called nitric oxide, its proper name is nitrogen monoxide. Similarly, N₂O is known as nitrous oxide even though our rules would specify the name dinitrogen monoxide. (And H₂O is usually called water, not dihydrogen monoxide.) You should commit to memory the common names of compounds as you encounter them.

Example 14.2

Naming Covalent Compounds

Name the following covalent compounds: (a) SF_6

(b) N₂O₃

(c) Cl₂O₇

(d) P₄O₆

Solution

Because these compounds consist solely of nonmetals, we use prefixes to designate the number of atoms of each element:

(a) sulfur hexafluoride

(b) dinitrogen trioxide

(c) dichlorine heptoxide

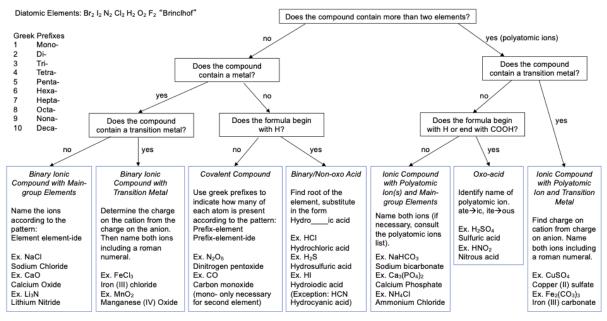
(d) tetraphosphorus hexoxide

Check Your Learning

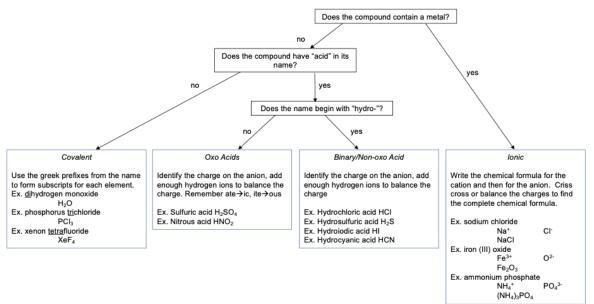
Write the formulas for the following compounds: (a) phosphorus pentachloride

(b) dinitrogen monoxide

(c) iodine heptafluoride


(d) carbon tetrachloride

Answer


(a) PCI₅; (b) N₂O; (c) IF₇; (d) CCI₄

This flowchart may help you organize all the information about nomenclature.

Nomenclature Flowchart (formula to name)

Nomenclature Flowchart (name to formula)

Binary Acids

Some compounds containing hydrogen are members of an important class of substances known as acids. The chemistry of these compounds is explored in more detail in later chapters of this text, but for now, it will suffice to note that many acids release hydrogen ions, H⁺, when dissolved in water. To denote this distinct chemical property, a mixture of water with an acid is given a name derived from the compound's name. If the compound is a binary acid (comprised of hydrogen and one other nonmetallic element):

- 1. The word "hydrogen" is changed to the prefix hydro-
- 2. The other nonmetallic element name is modified by adding the suffix -ic
- 3. The word "acid" is added as a second word

For example, when the gas HCI (hydrogen chloride) is dissolved in water, the solution is called *hydrochloric acid*. Several other examples of this nomenclature are shown in <u>Table 14.5</u>.

Table 14.5

Names of Some Simple Acids

Name of Gas	Name of Acid
HF(g), hydrogen fluoride	HF(<i>aq</i>), hydrofluoric acid
HCl(g), hydrogen chloride	HCl(<i>aq</i>), hydrochloric acid
HBr(<i>g</i>), hydrogen bromide	HBr(<i>aq</i>), hydrobromic acid
HI(<i>g</i>), hydrogen iodide	HI(<i>aq</i>), hydroiodic acid
$H_2S(g)$, hydrogen sulfide	$H_2S(aq)$, hydrosulfuric acid

Oxyacids

Many compounds containing three or more elements (such as organic compounds or coordination compounds) are subject to specialized nomenclature rules that you will learn later. However, we will briefly discuss the important compounds known as oxyacids, compounds that contain hydrogen, oxygen, and at least one other element, and are bonded in such a way as to impart acidic properties to the compound (you will learn the details of this in a later chapter). Typical oxyacids consist of hydrogen combined with a polyatomic, oxygen-containing ion. To name oxyacids:

- 1. Omit "hydrogen"
- 2. Start with the root name of the anion
- 3. Replace ate with ic, or ite with ous
- 4. Add "acid"

For example, consider H_2CO_3 (which you might be tempted to call "hydrogen carbonate"). To name this correctly, "hydrogen" is omitted; the – *ate* of carbonate is replace with – *ic*; and acid is added—so its name is carbonic acid. Other examples are given in <u>Table 14.6</u>. There are some exceptions to the general naming method (e.g., H_2SO_4 is called sulfuric acid, not sulfic acid, and H_2SO_3 is sulfurous, not sulfous, acid).

Table 14.6

Names of Common Oxyacids

Formula	Anion Name	Acid Name
$HC_2H_3O_2$	acetate	acetic acid
HNO ₃	nitrate	nitric acid
HNO ₂	nitrite	nitrous acid
HCIO ₄	perchlorate	perchloric acid
H ₂ CO ₃	carbonate	carbonic acid
H ₂ SO ₄	sulfate	sulfuric acid
H ₂ SO ₃	sulfite	sulfurous acid

Formula	Anion Name	Acid Name
H ₃ PO ₄	phosphate	phosphoric acid

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., & Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/4-3-chemical-nomenclature

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/nomenclature.