
1

How to Retrieve Data From a Single Table

The Five Clauses of the SELECT statement

SELECT – the columns in the result set
FROM – names the base table(s) from which results will be retrieved
WHERE – specifies any conditions for the results set (filter)
ORDER BY – sets how the result set will be ordered
LIMIT – sets the number of rows to be returned

The clauses MUST appear in the order shown above.

Code Example:

1 USE world;
2 SELECT name
3 FROM city
4 WHERE CountryCode = “AFG”
5 ORDER BY name
6 LIMIT 3

Results:

3

Let us break the statement line by line:

USE world;

The USE clause sets the database that we will be querying. You typically have more than one database on your
database server. You have to specify which database you are working in.
The semicolon “;” indicates the end of a statement. You can execute multiple statements in sequence by defining
each statement with a semicolon

SELECT name

The SELECT clause defines the columns and column order that you want to retrieve in your results set. If you want
to retrieve all of the columns from the base table you can simply use SELECT *
You separate each column name with a comma “,” ex., SELECT name, CountryCode
There is no trailing comma at the end of a column list

FROM city

The FROM clause specifies the table that the results will be coming from
You can specify multiple tables by using a JOIN clause, but we will address that topic at a future time

ORDER BY name

The ORDER BY clause is not required but when used it defines the sort order of the results
By default, the sort order is ascending. This is implicit However, you can use explicit syntax of ASC. If you want the
sort, order to be descending you can use the keyword DESC.
You can specify more than one column in an Order By statement separated by commas. The sort order DESC, ASC
applies to each column individually. Below IS some examples

ORDER BY population ASC, name DESC
ORDER BY population, name (ASC is always implied if not explicitly stated)

LIMIT 5;

4

If you only want to return a specified number of rows from the result set, you can use the LIMIT clause. This can be
helpful when you want to test a query for accuracy that could potentially bring back a very large number of rows.
The semicolon ; defines the end of the statement

Table 1. Column Specifications

Source Option Syntax

Base Table Value Show all columns

Base Table Value Column Name Comma separated list of column names

Calculated Value Calculation result Arithmetic expression

Calculated Value Calculation result Functions

LIKE and REGEXP Operators

The LIKE keyword is used with the WHERE clause.
The LIKE keyword and can use two symbols as wildcards. The percent (%) symbol matches any number of
characters and the underscore (_) matches a single character
REGEXP keyword allows you to do more complex pattern matching than a LIKE keyword/
Some version of REGEXP exists in many computer languages. Refer to the “LIKE and REGEXP” handout for
a full list of examples.

Table 2. LIKE Keyword

LIKE Symbol Description

% Match any string of characters to the left of the symbol

_ Match a single character

Code Example:

USE world;
SELECT name
FROM country
WHERE name LIKE ‘A%’

Results:

5

Table 3. REXEXP Keyword

REGEXP Characters Description

^ Match the pattern to the beginning of the value being tested.

$ Match the pattern to the end of the value being tested.

. Matches any single character.

[charlist] Matches any single character listed within the brackets.

[char1 – char2] Matches any single character within the given range.

| Separates two string patterns and matches either one

Code Example:

USE world;
SELECT name
FROM country
WHERE name REGEXP 'g[o,u]';

Results:

6

Arithmetic Operators

Arithmetic operators can be used in the SELECT, WHERE, and ORDER BY clauses.
Operators are evaluated in the same way as arithmetic in other contexts.

Table 4. Operators and precendence order

Operator Name Order of Precedence

* Multiplication 1

/ Division 1

DIV Integer Division 1

% (MOD) Modulo (remainder) 1

+ Addition 2

- Subtraction 2

7

Code Example:

USE world;
SELECT name, population / SurfaceArea
AS "People per square mile"
FROM country;

Results:

Column Aliases

A column alias provides a way to create a clean or more descriptive header for a results set.
A column alias cannot be used in a SELECT, WHERE, GROUP BY or HAVING clause due to the order of
execution. You must refer to the original column name.

In the previous example, we created a new column that was a calculated value. The problem is that the column header
is now population / SurfaceArea. However we can rename the column header to something cleaner be create a column
alias. Look at the code snippet below.

Code Example:

SELECT name, population / SurfaceArea
 AS “People per square mile”
FROM country;

We used the AS keyword then in quotes we put the new column alias of “People per square mile.” Which changes the
column header as seen show below.

8

Results:

Comparison Operators

Comparison operators compare two expressions.
The result of a comparison results to true or false.
Comparison operators are not case sensitive and are used with text and dates as well as numbers.

Table 5. Comparison Operators

Operator Description

= Equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Not equal

9

Operator Description

!= Not equal

Code Example:

USE world;
SELECT name, population
FROM country
WHERE population > 1000000;

Results:

IS NULL

Null values indicate an unknown or non-existent value and is different from an empty string (‘ ‘).
To test for a null value you use the IS NULL clause
The test for a value use IS NOT NULL clause

Code Example:

SELECT name, IndepYear
FROM country
WHERE IndepYear IS NULL;

Results:

10

BETWEEN Operators

The BETWEEN operator is similar to >= and <=.
BETWEEN includes everything between the two values indicated.
BETWEEN works with both text and number.

Code Example:

USE world;
SELECT name, IndepYear
FROM country
WHERE name BETWEEN "Aruba" and "Bahamas";

Results:

11

The IN Keyword

The IN clause tests whether an expression is equal to a value or values in a list of expressions.
The order of the items in the list does not matter.
You can use the NOT operator to test for items not in the list.
The IN clause may be used with a subquery.

Code Example:

USE world;
SELECT name
FROM country
WHERE name IN ('Aruba', 'Barbados', 'Cuba', 'Bahamas')
ORDER BY population ASC;

Results:

12

AND, OR, NOT Logical Operators

Logical operators are used in the WHERE clause
You may use multiple logical operators in a WHERE clause to create a compound condition. The order of
evaluation when multiple operators are used is shown in the table above.

Table 6. Logical Operators

Operator Description Order of Evaluation

NOT (a NOT b) – a must be present but b must NOT be present to be included 1

AND (a AND b) –If both a and b are present, item is included 2

OR (a OR b) – If either a OR b is present item is included 3

Example:

USE world;
SELECT name, population
FROM country
WHERE region = 'caribbean'
AND population > 100000
ORDER BY population ASC;

Results:

13

DISTINCT Keyword

DISTINCT appears directly after the SELECT clause.
You can specify multiple columns, which means that the combination of columns must be unique.

Table 7. DISTINCT Keyword

Keyword Description Order of Evaluation

DISTINCT Eliminates duplicate rows 1

Example:

SELECT DISTINCT continent, name
FROM country
ORDER BY continent;

Results:

14

This content is provided to you freely by BYU-I Books.

Access it online or download it at https://books.byui.edu/learning_mysql/how_to_retrieve_data.

The Five Clauses of the SELECT Statement

Column Specifications

LIKE and REGEXP Operators

Arithmetic Operators

Column Aliases

Comparison Operators

IS NULL, BETWEEN, IN Operators

AND, OR, NOT Logical Operators

DISTINCT Clause

15

https://books.byui.edu/learning_mysql/how_to_retrieve_data
https://books.byui.edu/learning_mysql/the_five_clauses_of_
https://books.byui.edu/learning_mysql/12_column_specificat
https://books.byui.edu/learning_mysql/13_like_and_regexp_o
https://books.byui.edu/learning_mysql/14_arithmetic_operat
https://books.byui.edu/learning_mysql/column_aliases
https://books.byui.edu/learning_mysql/comparison_operators
https://books.byui.edu/learning_mysql/is_null_between_in_o
https://books.byui.edu/learning_mysql/and_or_not_logical_o
https://books.byui.edu/learning_mysql/distinct_clause
https://books.byui.edu/license/cc_by-nc-nd-int-4.0

16

